PixL Personalised Learning Che	ecklist	Date F	.G Rat	ing		
AQA A Level Physics (Concept) P6 :Further mechanics and thermal physics P6.1: Periodic motion	No Knowledge Insecure Secure					
Recall that motion in a circular path at constant speed implies there is an acceleration and requires a centripetal force						
Use the equation $\omega = v/r = 2\pi f$ for magnitude of angular speed						
Recall that the radian is a measure of an angle and estimate the acceleration and centripetal force in situations that in	nvolve rotation					
Use the equation $a = v^2/r = \omega^2 r$ for centripetal acceleration						
Use the equation $F = mv^2/r = m\omega^2 r$ for centripetal force						
Describe and analyse characteristics of simple harmonic motion (SHM).						
Describe the condition for SHM as: $a \propto -x$						
Define and use the equations $a = -\omega^2 x$ and $x = A \cos \omega t$ and $v = \pm \omega \sqrt{(A^2 - x^2)}$						
Sketch relationships between x , v , α and – t for simple harmonic oscillators.						
Draw graphical representations linking the variations of x , v and a with time						
Explain how the $v - t$ graph is derived from the gradient of the $x - t$ graph and that the $a - t$ graph is derived from the	he gradient of the <i>v</i> – <i>t graph</i>					
Recall that maximum speed = ωA and maximum acceleration = $\omega^2 A$						
Use the small-angle approximation in the derivation of the time period for examples of approximate SHM						
Use the equation $T = 2\pi V (m/k)$ for the study of a mass spring system and $T = 2\pi V (l/g)$ for a simple pendulum						
Explain the variation of E_k , E_p , and total energy with both displacement and time						

Describe the effects of damping on oscillations				
Explain how free and forced vibrations can be measured quantitatively				
Explain resonance and describe the effects of damping on the sharpness of resonance				
Describe examples of these effects in mechanical systems and situations involving stationary waves				
Investigate the factors that determine the resonant frequency of a driven system				
P6.2: Thermal physics				
Describe internal energy as the sum of the randomly distributed kinetic energies and potential energies of the particles in a body				
Explain how the internal energy of a system is increased when energy is transferred to it by heating or when work is done on it (and vice versa)				
Complete calculations involving transfer of energy and continuous flow				
Explain that during a change of state the potential energies of the particle ensemble are changing but not the kinetic energies.				
Use the equation $Q = mc \Delta \Theta$ for a change of temperature, where c is specific heat capacity.				
Use the equation $Q = mI$ for a change of state where I is the specific latent heat				
Describe gas laws as experimental relationships between <i>p</i> , <i>V</i> , <i>T</i> and the mass of the gas				
Explain the concept of absolute zero of temperature.				
Use the ideal gas equation: $pV = nRT$ for n moles and $pV = NkT$ for N molecules				
Recall that work done = p△V				
Recall and use the following constants: Avogadro constant N_A , molar gas constant R , Boltzmann constant k				
Describe and explain the following: molar mass and molecular mass.				
Investigate Boyle's law (constant temperature) and Charles's law (constant pressure) for a gas				

Explain Brownian motion as evidence for existence of atoms				
Explain the relationships between <i>p, V and T</i> in terms of a simple molecular model				
Explain that the gas laws are empirical in nature whereas the kinetic theory model arises from theory				
Use and derive the equation $pV = \frac{1}{2}Nm \left(c_{rms}\right)^2$				
Use a simple algebraic approach for conservation of momentum				
Explain that for an ideal gas internal energy is the kinetic energy of the atoms				
Use the equation average molecular kinetic energy = $\frac{1}{2} m(c_{rms})^2 = \frac{3}{2} kT = 3RT / 2N_A$				
Explain how knowledge and understanding of the behaviour of a gas has changed over time				

PixL Personalised Learning Checklist	Dat	Rati	ng		
AQA A Level Physics (Concept) P7: Fields and their consequences P7.1: Fields Secure					
Describe the concept of a force field as a region in which a body experiences a non-contact force					
Recognise that a force field can be represented as a vector, the direction of which must be determined by inspection					
Describe how force fields arise from the interaction of mass, of static charge, and between moving charges					
Explain the similarities and differences between gravitational and electrostatic forces					
P7.2: Gravitational fields					
Describe what gravity is					
Use the equation $F = Gm_1m_2/r^2$ for magnitude of force between point masses where G is the gravitational constant					
Be able to estimate the gravitational force between a variety of objects					
Be able to represent a gravitational field by gravitational field lines					
Use the equation $g = F/m$ with g as force per unit mass					
Use the equation $g = GM/r^2$ for magnitude of g in a radial field					
Define gravitational potential, including zero value at infinity					
Describe what gravitational potential difference is					
Use the equation: work done in moving mass for m given by $\Delta W = m\Delta V$					
Explain what equipotential surfaces are and explain why no work is done when moving along an equipotential surface					

Use the equation: $V = -GM/r$ for V in a radial field					
Explain the significance of the negative sign					
Draw graphical representations of variations of $m{g}$ and $m{V}$ with $m{r}$					
Use the equation: $g = -\Delta V/\Delta r$ for V related to g					
Determine ΔV from area under graph of g against r					
Describe orbital period and speed related to radius of circular orbit; ab derive $T^2 \propto r^3$					
Estimate various parameters of planetary orbits, eg kinetic energy of a planet in orbit					
Calculate total energy of an orbiting satellite, escape velocity and describe synchronous orbits					
Describe the use of satellites in low orbits and geostationary orbits, to include plane and radius of geostationary orbit					
Use logarithmic plots to show relationships between $m{r}$ and $m{r}$ for given data					
P3: Electric fields					
Use the equation $F = 1/4 \pi \epsilon_0 \times Q_1 Q_2/r^2$ for the force between two charges in a vacuum					
Describe what the permittivity of free space is, $oldsymbol{arepsilon}_{oldsymbol{0}}$					
Recall that air can be treated as a vacuum when calculating force between charges					
Recall that for a charged sphere, charge may be considered to be at the centre					
Compare magnitude of gravitational and electrostatic forces between subatomic particles				_	
Compare magnitude of gravitational and electrostatic forces between subatomic particles Estimate the magnitude of the electrostatic force between various charge configurations					
Estimate the magnitude of the electrostatic force between various charge configurations					

Use the equation: $E = V/d$, for magnitude of E in a uniform field Derive the equation: $Fd = Q\Delta V$ from work done for moving charge between plates				
Derive the equation: Fd = QAV from work done for moving charge between plates				
The same of the sa				
Describe the trajectory of moving charged particle entering a uniform electric field initially at right angles				
Use the equation $E = 1/4 \pi \epsilon_0 \times Q/r^2$, for magnitude of E in a uniform field				
Investigate the patterns of various field configurations using conducting paper (2D) or electrolytic tank (3D)				
Define absolute electric potential, including zero value at infinity, and of electric potential difference				
Use the equation: $\Delta W = Q\Delta V$ for work done in moving charge Q				
Explain what equipotential surfaces are and explain why no work is done when moving charge along an equipotential surface				
Use the equation: $V = 1/4\pi\epsilon_0 \times Q/r^2$ for magnitude of V in a radial field				
Draw graphical representations of variations of $m{E}$ and $m{V}$ with $m{r}$				
Use the equation: $E = \Delta V/\Delta r$ to related V to E				
Determine ΔV from the area under graph of E against r				
P4: Capacitance				
Define capacitance and use the equation: $C = Q/V$				
Describe the dielectric action in a capacitor by $C = A \varepsilon_0 \varepsilon_r / d$				
Define relative permittivity and dielectric constant				
Determine the relative permittivity of a dielectric using a parallel-plate capacitor				
Describe the action of a simple polar molecule that rotates in the presence of an electric field				
Investigate the relationship between C and the dimensions of a parallel-plate capacitor				

Draw graphical representation of charging and discharging of capacitors through resistors Draw corresponding graphs for <i>Q</i> , <i>V</i> and <i>I</i> against time for charging and discharging Interpret gradients and areas under graphs Calculate time constants <i>RC</i> including their determination from graphical data Use the equation: <i>T</i> _N = 0.69RC for time to halve Use the equation: <i>Q</i> = <i>Q</i> ₀ e ^{-VAC} for quantitative treatment of capacitor discharge Use the equation: <i>Q</i> = <i>Q</i> ₀ (1 - e ^{-VAC}) for quantitative treatment of capacitor charge Investigate the charge and discharge of capacitors PS: Magnetic fields Describe force on a current-carrying wire in a magnetic field: <i>F</i> = <i>BII</i> when field is perpendicular to current Describe and use Fleming's left hand rule Explain magnetic flux density <i>B</i> and give a definition for the tesla Investigate how the force on a wire varies with flux density, current and length of wire using a top pan balance Describe force on charged particles moving in a magnetic field, using <i>F</i> = <i>BQv</i> when the field is perpendicular to velocity Recall the direction of force on positive and negative charged particles			 		
Draw corresponding graphs for <i>Q</i> , <i>V</i> and <i>I</i> against time for charging and discharging Interpret gradients and areas under graphs Calculate time constants <i>RC</i> including their determination from graphical data Use the equation: <i>T_N</i> = 0.69 <i>RC</i> for time to halve Use the equation: <i>Q</i> = <i>Q_i</i> e ^{-VRC} for quantitative treatment of capacitor discharge Use the equation: <i>Q</i> = <i>Q_i</i> e ^{-VRC} for quantitative treatment of capacitor discharge Use the equation: <i>Q</i> = <i>Q_i</i> e ^{-VRC} for quantitative treatment of capacitor charge Investigate the charge and discharge of capacitors P5: Magnetic fields Describe force on a current-carrying wire in a magnetic field: <i>F</i> – <i>BII</i> when field is perpendicular to current Describe and use Fleming's left hand rule Explain magnetic flux density <i>B</i> and give a definition for the tesla Investigate how the force on a wire varies with flux density, current and length of wire using a top pan balance Describe force on charged particles moving in a magnetic field, using <i>F</i> = <i>BQv</i> when the field is perpendicular to velocity Recall the direction of force on positive and negative charged particles Describe the circular path of particles in application in devices such as the cyclotron	Interpret the area under a graph of charge against pd $E = \frac{1}{2} QV = \frac{1}{2} CV^2 = \frac{1}{2} Q^2/C$				
Interpret gradients and areas under graphs Calculate time constants RC including their determination from graphical data Use the equation: T _S = 0.69RC for time to halve Use the equation: Q = Q _Q e - VPC for quantitative treatment of capacitor discharge Use the equation: Q = Q _Q e - VPC for quantitative treatment of capacitor discharge Use the equation: Q = Q _Q (1 - e - VPC) for quantitative treatment of capacitor charge Investigate the charge and discharge of capacitors PS: Magnetic fields Describe force on a current-carrying wire in a magnetic field: F = BII when field is perpendicular to current Describe and use Fleming's left hand rule Explain magnetic flux density B and give a definition for the tesla Investigate how the force on a wire varies with flux density, current and length of wire using a top pan balance Describe force on charged particles moving in a magnetic field, using F = BQV when the field is perpendicular to velocity Recall the direction of force on positive and negative charged particles Describe the circular path of particles in application in devices such as the cyclotron	Draw graphical representation of charging and discharging of capacitors through resistors				
Calculate time constants RC including their determination from graphical data Use the equation: T _N = 0.69RC for time to halve Use the equation: Q = Q ₀ e ^{-VRC} for quantitative treatment of capacitor discharge Use the equation: Q = Q ₀ (1 - e ^{-VRC}) for quantitative treatment of capacitor charge Investigate the charge and discharge of capacitors P5: Magnetic fields Describe force on a current-carrying wire in a magnetic field: F - BH when field is perpendicular to current Describe and use Fleming's left hand rule Explain magnetic flux density B and give a definition for the tesla Investigate how the force on a wire varies with flux density, current and length of wire using a top pan balance Describe force on charged particles moving in a magnetic field, using F = BQv when the field is perpendicular to velocity Recall the direction of force on positive and negative charged particles Describe the circular path of particles in application in devices such as the cyclotron	Draw corresponding graphs for Q , V and I against time for charging and discharging				
Use the equation: $T_S = 0.69RC$ for time to halve Use the equation: $Q = Q_o e^{-V/RC}$ for quantitative treatment of capacitor discharge Use the corresponding equations for V and I Use the equation: $Q = Q_o (1 - e^{-U/RC})$ for quantitative treatment of capacitor charge Investigate the charge and discharge of capacitors P5: Magnetic fields Describe force on a current-carrying wire in a magnetic field: $F - BII$ when field is perpendicular to current Describe and use Fleming's left hand rule Explain magnetic flux density B and give a definition for the tesla Investigate how the force on a wire varies with flux density, current and length of wire using a top pan balance Describe force on charged particles moving in a magnetic field, using $F = BQV$ when the field is perpendicular to velocity Recall the direction of force on positive and negative charged particles Describe the circular path of particles in application in devices such as the cyclotron	Interpret gradients and areas under graphs				
Use the equation: $Q = Q_0 e^{-VRC}$ for quantitative treatment of capacitor discharge Use the corresponding equations for V and I Use the equation: $Q = Q_0 (1 - e^{-VRC})$ for quantitative treatment of capacitor charge Investigate the charge and discharge of capacitors P5: Magnetic fields Describe force on a current-carrying wire in a magnetic field: $F - BII$ when field is perpendicular to current Describe and use Fleming's left hand rule Explain magnetic flux density B and give a definition for the tesla Investigate how the force on a wire varies with flux density, current and length of wire using a top pan balance Describe force on charged particles moving in a magnetic field, using $F = BQV$ when the field is perpendicular to velocity Recall the direction of force on positive and negative charged particles Describe the circular path of particles in application in devices such as the cyclotron	Calculate time constants <i>RC</i> including their determination from graphical data				
Use the corresponding equations for <i>V</i> and <i>I</i> Use the equation: $Q = Q_0 (I - e^{-VRC})$ for quantitative treatment of capacitor charge Investigate the charge and discharge of capacitors P5: Magnetic fields Describe force on a current-carrying wire in a magnetic field: $F - BII$ when field is perpendicular to current Describe and use Fleming's left hand rule Explain magnetic flux density <i>B</i> and give a definition for the tesla Investigate how the force on a wire varies with flux density, current and length of wire using a top pan balance Describe force on charged particles moving in a magnetic field, using $F = BQV$ when the field is perpendicular to velocity Recall the direction of force on positive and negative charged particles Describe the circular path of particles in application in devices such as the cyclotron	Use the equation: T = 0.69RC for time to halve				
Use the equation: $Q = Q_0 (1 - e^{-t/RC})$ for quantitative treatment of capacitor charge Investigate the charge and discharge of capacitors P5: Magnetic fields Describe force on a current-carrying wire in a magnetic field: $F = BII$ when field is perpendicular to current Describe and use Fleming's left hand rule Explain magnetic flux density B and give a definition for the tesla Investigate how the force on a wire varies with flux density, current and length of wire using a top pan balance Describe force on charged particles moving in a magnetic field, using $F = BQV$ when the field is perpendicular to velocity Recall the direction of force on positive and negative charged particles Describe the circular path of particles in application in devices such as the cyclotron	Use the equation: $\mathbf{Q} = \mathbf{Q}_0 \mathbf{e}^{-t/RC}$ for quantitative treatment of capacitor discharge				
Investigate the charge and discharge of capacitors PS: Magnetic fields Describe force on a current-carrying wire in a magnetic field: F – BII when field is perpendicular to current Describe and use Fleming's left hand rule Explain magnetic flux density B and give a definition for the tesla Investigate how the force on a wire varies with flux density, current and length of wire using a top pan balance Describe force on charged particles moving in a magnetic field, using F = BQv when the field is perpendicular to velocity Recall the direction of force on positive and negative charged particles Describe the circular path of particles in application in devices such as the cyclotron	Use the corresponding equations for V and I				
PS: Magnetic fields Describe force on a current-carrying wire in a magnetic field: F – BII when field is perpendicular to current Describe and use Fleming's left hand rule Explain magnetic flux density B and give a definition for the tesla Investigate how the force on a wire varies with flux density, current and length of wire using a top pan balance Describe force on charged particles moving in a magnetic field, using F = BQv when the field is perpendicular to velocity Recall the direction of force on positive and negative charged particles Describe the circular path of particles in application in devices such as the cyclotron	Use the equation: $Q = Q_0 (1 - e^{-t/RC})$ for quantitative treatment of capacitor charge				
Describe force on a current-carrying wire in a magnetic field: $F - BII$ when field is perpendicular to current Describe and use Fleming's left hand rule Explain magnetic flux density B and give a definition for the tesla Investigate how the force on a wire varies with flux density, current and length of wire using a top pan balance Describe force on charged particles moving in a magnetic field, using $F = BQV$ when the field is perpendicular to velocity Recall the direction of force on positive and negative charged particles Describe the circular path of particles in application in devices such as the cyclotron	Investigate the charge and discharge of capacitors				
Describe and use Fleming's left hand rule Explain magnetic flux density B and give a definition for the tesla Investigate how the force on a wire varies with flux density, current and length of wire using a top pan balance Describe force on charged particles moving in a magnetic field, using F = BQv when the field is perpendicular to velocity Recall the direction of force on positive and negative charged particles Describe the circular path of particles in application in devices such as the cyclotron	P5: Magnetic fields				
Explain magnetic flux density B and give a definition for the tesla Investigate how the force on a wire varies with flux density, current and length of wire using a top pan balance Describe force on charged particles moving in a magnetic field, using F = BQv when the field is perpendicular to velocity Recall the direction of force on positive and negative charged particles Describe the circular path of particles in application in devices such as the cyclotron	Describe force on a current-carrying wire in a magnetic field: F - BII when field is perpendicular to current				
Investigate how the force on a wire varies with flux density, current and length of wire using a top pan balance Describe force on charged particles moving in a magnetic field, using F = BQv when the field is perpendicular to velocity Recall the direction of force on positive and negative charged particles Describe the circular path of particles in application in devices such as the cyclotron	Describe and use Fleming's left hand rule				
Describe force on charged particles moving in a magnetic field, using F = BQv when the field is perpendicular to velocity Recall the direction of force on positive and negative charged particles Describe the circular path of particles in application in devices such as the cyclotron	Explain magnetic flux density B and give a definition for the tesla				
Recall the direction of force on positive and negative charged particles Describe the circular path of particles in application in devices such as the cyclotron	Investigate how the force on a wire varies with flux density, current and length of wire using a top pan balance				
Describe the circular path of particles in application in devices such as the cyclotron					
	Describe force on charged particles moving in a magnetic field, using $\mathbf{F} = \mathbf{BQv}$ when the field is perpendicular to velocity				
Explain the terms: magnetic flux density $\phi = BA$, and flux linkage $N\phi$, where B is normal to A and N is the number of turns cutting the flux	Describe force on charged particles moving in a magnetic field, using F = BQv when the field is perpendicular to velocity Recall the direction of force on positive and negative charged particles				

Describe flux and flux linkage passing through a rectangular coil rotated in a magnetic field as flux linkage $N \phi = BANcos \theta$				
Investigate, the effect on magnetic flux linkage of varying the angle between a search coil and magnetic field direction				
Describe simple experimental phenomena for electromagnetic induction				
Describe and apply Faraday's and Lenz's laws for electromagnetic induction				
Use the equation: $\varepsilon = N \Delta \phi / \Delta$ for magnitude of induced emf = rate of change of flux linkage				
Describe applications such as a straight conductor moving in a magnetic field				
Use the equation: $\varepsilon = BAN\omega \sin \omega t$ for emf induced in a coil rotating uniformly in a magnetic field				
Recall Sinusoidal voltages and currents, root mean square, peak and peak-to-peak values for sinusoidal waveforms only				
Use the equation: $I_{rms} = I_0 / \sqrt{2}$; $V_{rms} = V_0 / \sqrt{2}$				
Apply the calculation of mains electricity peak and peak-to-peak voltage values				
Use an oscilloscope as a dc and ac voltmeter, to measure time intervals and frequencies, and to display ac waveforms				
Use the following transformer equation: $N_s/N_p = V_s/V_p$				
Use the equation: $I_s V_s / I_p V_p$ to calculate transformer efficiency				
Describe and explain the production of eddy currents and causes of inefficiencies in a transformer				
Describe the transmission of electrical power at high voltage including calculations of power loss in transmission lines				

Personalised Learning Checklish Personalised Learning Checklish	st	Date Ro	eviewed	and RAG	G Rating
AQA A Level Physics (Concept) P8: Nuclear physics P8.1: Radioactivity	No Knowledge Insecure Secure				
Describe the qualitative study of Rutherford scattering					
Describe how knowledge and understanding of the structure of the nucleus has changed over time					
Describe the properties and experimental identification using simple absorption experiments for α , β and γ radiation					
Describe and explain the hazards of exposure for humans to α , β and γ radiation					
Describe the applications of α , β and γ radiation					
Recall the inverse-square law for γ radiation: $I = k/x^2$ and use experiments for verification of inverse-square law					
Explain how radioactive sources can be handled safely					
Define background radiation giving examples of its origins and experimental elimination from calculations.					
Evaluate the balance between risk and benefits in the uses of radiation in medicine					
Describe the random nature of radioactive decay; constant decay probability of a given nucleus					
Use the equations: $\Delta N/\Delta t = -\Lambda N$; $N = N_0 e^{-\Lambda t}$ and $A = \Lambda N$					
Use modelling to describe constant decay probability					
Investigate the decay equation (including the use of experimental data, dice simulations etc) and a variety of analytical methods	İs				
Use the equation: $\mathbf{A} = \mathbf{A}_0 e^{-\mathbf{A}t}$					
Use the half life equation: T ½ = In2/K					

Determine half-life from graphical decay data including decay curves and log graphs				
Describe application for radioactive decay e.g. relevance to storage of radioactive waste, radioactive dating etc				
Draw graphs of N against Z for stable nuclei				
Describe possible decay modes of unstable nuclei including α , β +, β - and electron capture				
Describe changes in N and Z caused by radioactive decay and representation in simple decay equations				
Interpret nuclear energy level diagrams				
Recall the existence of nuclear excited states; γ ray emission; discuss applications e.g. use of technetium-99m as a γ source in medical diagnosis				
Estimate nuclear radius from closest approach of alpha particles and determination of radius from electron diffraction				
Recall of typical values for nuclear radius and use the Coulomb equation for the closest approach estimate				
Describe how the nuclear radius depends on the nucleon number				
Derive $R = R_0 A^{1/3}$ from experimental data and interpret the of equation as evidence for constant density of nuclear material				
Calculate nuclear density and describe the graph of intensity against angle for electron diffraction by a nucleus				
Recall that $E = mc^2$ applies to all energy changes				
Complete simple calculations involving mass difference and binding energy				
Recall and use the Atomic mass unit, u and conversion of units; 1 u = 931.5 MeV				
Describe and explain fission and fusion processes				
Complete simple calculations from nuclear masses of energy released in fission and fusion reactions				
Draw graphs of average binding energy per nucleon against nucleon number				
		•		

Personalised Learning Checklist		Date	Revi	ewed	and	RAG	Rating
AQA A Level Physics (Concept) P9: Astrophysics (optional) P9.1: Telescopes	No Knowledge Insecure Secure						
Recall that astronomical telescope consisting of two converging lenses							
Draw ray diagrams to show the image formation in normal adjustment							
Describe angular magnification in normal adjustment							
Use the equation: M = angle subtended by image at eye/ angle subtended by object at unaided eye							
Calculate the Focal lengths of the lenses by using the equation: $M = f_o/f_e$							
Describe cassegrain arrangement using a parabolic concave primary mirror and convex secondary mirror for reflecting telescopes							
Draw ray diagram to show path of rays through the reflecting telescope up to the eyepiece							
Discuss the relative merits of reflectors and refractors including a qualitative treatment of spherical and chromatic aberration							
Recall what single dish radio telescopes, I-R, U-V and X-ray telescopes are							
Discuss the similarities and differences of radio telescopes compared to optical telescopes (Inc. structure, positioning and use)							
Compare the resolving and collecting powers of radio telescopes							
Describe the advantages of large diameter telescopes for minimum angular resolution of telescope							
Use the equation: Rayleigh criterion, θ ≈ Λ/D							
Recall that collecting power is proportional to <i>diameter</i> ²							
Compare the eye and CCD as detectors in terms of quantum efficiency, resolution, and convenience of use							

PO A Chart Part to a factor		
P9.2: Classification of stars		
Recall how stars are classified by luminosity and that the apparent magnitude, m		
Recall and describe the Hipparcos scale		
Recall that the dimmest visible stars have a magnitude of 6		
Discuss the relationship between brightness and apparent magnitude		
Recall that a difference of 1 on the magnitude scale is equal to an intensity ratio of 2.51		
Recall that brightness is a subjective scale of measurement		
Describe what a Parsec and a lightyear are		
For absolute magnitude define M, in relation to m: $m - M = 5 \log d/10$		
Recall how stars are classified by temperature and black-body radiation		
Apply Stefan's law and Wien's displacement law		
Recall the general shape of black-body curves, and use of Wien's displacement law to estimate black-body temperature of sources		
Use the equation: $\Lambda_{max} T = constant = 2.9 \times 10^{-3} m K$		
Recall the assumption that a star is a black body		
Use of Stefan's law to compare the power output, temperature and size of stars $P = \sigma A T^4$		
Describe the spectral classes OBAFGKM in terms of colour, temperature and prominent absorption lines		
Describe what the Hertzsprung-Russell (HR) diagram shows		
Describe the general shape: main sequence, dwarfs and giants		
Use axis scales range from –10 to +15 (absolute magnitude) and 50 000 K to 2 500 K (temperature) or OBAFGKM (spectral class)		

Recall the position of the Sun on the HR diagram				
Describe stellar evolution: path of a star similar to our Sun on the HR diagram from formation to white dwarf				
Define properties: rapid increase in absolute magnitude of supernovae; composition and density of neutron stars; escape velocity > c for black holes.				
Recall that gamma ray bursts are due to the collapse of supergiant stars to form neutron stars or black holes				
Compare energy output with total energy output of the Sun				
Describe the use of type 1a supernovae as standard candles to determine distances				
Discuss controversy concerning accelerating Universe and dark energy				
Recall the light curve of typical type 1a supernovae				
Recall that supermassive black holes are at the centre of galaxies				
Calculate the radius of the event horizon for a black hole using Schwarzschild radius (R_s), $R_s \approx 2GM/c^2$				
P9.3: Cosmology				
Describe the Doppler effect				
Apply $\Delta f/f = v/c$ and $z = \Delta \Lambda/\Lambda = -v/c$ for $v << c$ to optical and radio frequencies.				
Complete calculations on binary stars viewed in the plane of orbit				
Describe what galaxies and quasars are				
Define and use Hubble's law				
Use the following equation: $v = Hd$ for red shift				
Make simple interpretations for expansion of universe; estimation of age of universe, assuming H is constant				
Evaluate qualitative data for Big Bang theory including evidence from cosmological microwave background radiation, and relative abundance of H & He				

Define quasars as the most distant measurable objects				
Describe the discovery of quasars as bright radio sources				
Recall that quasars show large optical red shifts; estimation involving distance and power output				
Describe the formation of quasars from active supermassive black holes				
Discuss the difficulties in the direct detection of exoplanets				
Describe how detection techniques will be limited to variation in Doppler shift (radial velocity method) and the transit method				
Recognise a typical light curve				